

SN100C[®] Technical Guide

INTRODUCTION

SN100C is a lead-free tin/copper/nickel/germanium alloy. It has been in use since about the year 2000. Since then SN100C has become a world leading alloy in wave and selective solder applications. SN100C is also used in solder paste, wire solder, lead tinning and hot air level applications.

SN100C ALLOYS AND COMPOSITION

QC specifications for fresh solder

ELEMENT	SN100C	SN100Ce	SN100CL	SN100CLe	SN100C3 or C4
Tin (Sn)	Remainder	Remainder	Remainder	Remainder	Remainder
Copper (Cu)	0.60 - 0.70%	0%	0.60 - 0.70%	0%	3.0 or 4.0%
Nickel (Ni)	0.04 - 0.07%	0.04 - 0.07%	0.04 - 0.07%	0.04 - 0.07%	0.04 - 0.07%
Germanium (Ge)	0.006 – 0.007%	0.006 – 0.007%	0.006 – 0.007%	0.006 – 0.007%	0.006 – 0.007%
Purpose	Wave solder, solder paste, wire solder	Replenisher for wave if copper is high	Hot air level makeup only	Replenisher for hot air level	Lead tinning

SN100C ADDITIVES

ELEMENT	Nickel 10 (Ni10)	AO1000	
Tin (Sn)	Remainder	Remainder	
Copper (Cu)	0%	0%	
Nickel (Ni)	10%	0%	
Germanium (Ge)	0%	1%	
Purpose	Added to increase nickel	Added to increase germanium	

NORMAL OPERATION FOR WAVE / SELECTIVE SOLDER

A fresh solder pot is made up with SN100C, and in most cases SN100C is the only material required to replenish the solder pot. Normal additions to increase the solder level in the pot are usually able to maintain the alloy within operating specification.

As the solder is run, dross formation and removal will change the alloy composition. Dross is mostly comprised of tin oxide, but copper, nickel, and germanium oxides also become part of the dross. Over time, copper and nickel will slowly decrease, but typically stay within specification. Germanium decreases at a faster rate, and occasional additions of AO1000 additive might be required.

Temperature and time have the greatest effect on the rate of dross formation. Higher temperatures and longer "on" times increase the rate of dross formation. Higher dross rates lead to quicker drop rates in

FCT Assembly • 1309 North 17th Avenue • Greeley, Colorado • 80631 • 970-346-8002

germanium, copper, and nickel concentrations. It is highly recommended to minimize the solder pot temperature, and turn the pot off when not in use.

EFFECTS OF CIRCUIT BOARD FINISHES

Metals from the solderable finish on the circuit boards will dissolve into the solder and build over time. These can affect the alloy composition, but do not normally require special actions to correct. Common solderable surface finishes and their effects on the SN100C alloy are described below.

Hot air level (lead-free)

This surface finish is typically SN100CL alloy over copper, which is nearly identical to SN100C. SAC305 is typically not used for lead free HASL, due to cost and the high rate of dross formation. The SN100CL surface finish does not add any foreign metals into the SN100C solder, so the SN100C solder will not change composition when this finish is used.

Hot air level (leaded)

This surface finish is typically 63Sn/37Pb solder over copper. Obviously this finish is not lead free, and therefore it will contaminate the SN100C solder pot with lead. The RoHS limit for lead is 0.1% by weight maximum.

If leaded HASL is used, then the lead concentration should be monitored closely through frequent analysis. The SN100C solder will have to be corrected when the lead reaches the RoHS limit. The only practical way to reduce lead content in SN100C is through dilution. For example, if the lead content is 0.1% by weight and we want to reduce this to 0.05%, then 50% of the solder will have to be removed from the pot and replaced with fresh SN100C.

Electroless Nickel Immersion Gold (ENIG)

This surface finish is comprised of a thick layer of nickel (100-200 microinches) covered with a thin layer of gold (2-5 microinches). The gold completely dissolves into the SN100C and the solder joint forms on the nickel layer. Over time gold content will increase in the SN100C solder, but this rate of gold increase is very slow. It is very uncommon for gold to exceed the recommended limit when this surface finish is used.

Immersion silver

This surface finish is comprised of a thin layer of silver (10-15 microinches) over copper. The silver dissolves into the solder and the solder joint forms to the copper. A region of SN100C with high silver content may exist near the copper pad of the board. Over time silver will increase in the solder, but this rate of silver increase is very slow. It is very uncommon for silver to exceed the recommended limit when this surface finish is used.

Immersion tin

www.fctassembly.com

This surface finish is comprised of a thin layer of tin (30-40 microinches) over copper. The tin dissolves into the SN100C and the solder joint forms to the copper. This surface finish does not add any foreign metals into the SN100C solder, so there are no changes to the SN100C alloy composition over time.

Organic Solderability Preservative (OSP)

This surface finish is comprised of an organic solderability preservative over copper. This OSP is typically based on imidazole type compounds, and does not contain any metals. There is no contamination of the SN100C solder from the OSP coating itself.

The copper underneath the OSP is dissolved into the solder at a fairly high rate. The activity level of the flux, the temperature of the solder, and the contact time of the solder all affect the rate of copper dissolution into

FCT Assembly • 1309 North 17th Avenue • Greeley, Colorado • 80631 • 970-346-8002

the solder. When a high volume of OSP coated circuit boards are run, then copper in the SN100C solder will climb out of specification fairly quickly.

The best way to compensate for this increase in copper is to use SN100Ce as the replenishment alloy. SN100Ce is the same alloy as SN100C but without copper. SN100Ce can be added in place of SN100C to maintain the solder level in the pot. The copper content should be monitored closely through frequent analysis. As SN100Ce is used, there may be a point where the copper level drops near the low end of the specification range. If this occurs, then SN100Ce should no longer be used and SN100C should be used for replenishment. SN100Ce should only be used when copper is high, on a temporary basis.

Hard/soft gold

This surface finish is comprised of a thick layer of gold (40-60 microinches) plated over a thick layer of nickel (100-200 microinches). Some of the gold layer dissolves into the SN100C solder, and over time the gold concentration may exceed the specified maximum. The best way to reduce the gold concentration in SN100C is through dilution. For example, if the gold content is 0.08% by weight and we want to reduce it to 0.04%, then 50% of the solder will have to be removed from the pot and replaced with fresh SN100C.

SN100C WORKING SOLDER POT SPECIFICATIONS

ELEMENT	Recommended Range (% wt.)	Effects if out of specification	
Tin (Sn)	Balance	N/A	
Copper (Cu)	0.50 - 0.85	See text below table	
Nickel (Ni)	0.02 - 0.07	See text below table	
Germanium (Ge)	0.005 - 0.008	See text below table	
Aluminum (Al)	0.002 max	Potential embrittlement in solder joint	
Antimony (Sb)	0.05 max	Increase of melting point	
Arsenic (As)	0.03 max	Unknown	
Bismuth (Bi)	0.05 max	Unknown	
Cadmium (Cd)	0.005 max	Unknown	
Gold (Au)	0.08 max	Potential embrittlement in solder joint	
Iron (Fe)	0.02 max	Unknown	
Lead (Pb)	0.10 max	No longer RoHS compliant	
Silver (Ag)	0.05 max	Potential embrittlement in solder joint	
Zinc (Zn)	0.005 max	Potential embrittlement in solder joint	

Copper (Cu), nickel (Ni), and germanium (Ge) are the key elements in the SN100C alloy. It is very important to control these within specified ranges or the solder will not perform optimally.

- Low copper: the solder can become dull looking, but still smooth. Melting point increases closer to that of pure tin which is 232C.
- High copper: solder can become dull/grainy looking. Melting point increases and the solder takes on a melting range because it is no longer eutectic. The rate of dross formation might increase due to the higher level of copper. Barrel fill is less than optimal, and bridging/icicling might become an issue.

FCT Assembly • 1309 North 17th Avenue • Greeley, Colorado • 80631 • 970-346-8002

www.fctassembly.com

- Low nickel: solder will become dull looking, but still smooth. Drossing may increase. The intermetallic
 of tin/copper will no longer be stabilized by nickel. Over time, the intermetallic layer of solder joints
 will grow and could lead to mechanical strength issues.
- High nickel: no major issues, but also no added benefit above a nickel content of about 0.07% by weight.
- Low germanium: dross rate will increase. Germanium is an anti-oxidant, and is the primary dross inhibitor in the SN100C solder. Bridging/icicling might become an issue.
- High germanium: no major issues, but also no added benefit above a germanium content of about 0.008% by weight.

SN100C COMPARED TO COMPETITIVE ALLOYS

There are many competitive alloys to SN100C on the market that are based on the Sn/0.7Cu alloy. These alloys all share one common issue, the composition has to be modified to be different from that of SN100C in order to avoid patent violations. When nickel and/or germanium are not used at the proper concentrations, then performance suffers. Here is a brief summary of these alloys.

	SN100C	SAC0307 Many sources	K100LD Kester	SN995 Indium	SC995e/SN100e Metallic Resources/Qualitek
Alloy	Sn/Cu/Ni/Ge	Sn/0.3Ag/0.7Cu	Sn/0.7Cu/X	Sn/0.5Cu/Co/X	Sn/0.5Cu/Co
Patent avoidance	N/A	Low silver addition	Low nickel	Cobalt replaces nickel	Cobalt replaces nickel
Grain refinement	Yes	No	No	No	No
Stable intermetallic	Yes	No	No	No	No
Stable composition	Yes	No	No	No	No

Comments about additives used in Sn/Cu based solders:

www.fctassembly.com

• Nickel is used at a proper level in SN100C and the benefits are grain refinement and stabilization of the intermetallic of the solder joint. Nickel also improves fluidity which provides good hole fill and wetting.

FCT Assembly • 1309 North 17th Avenue • Greeley, Colorado • 80631 • 970-346-8002

Some competitive alloys use nickel at levels below the proper range. Nickel is not as effective at low levels, so some of the benefits are lost.

- Germanium is used at a proper level in SN100C. It is the primary anti-oxidant in SN100C which reduces the rate of dross formation. Germanium also improves bridging and icicling performance by promoting good drainage of the solder. Germanium might be used in competitive solders below the proper level. Germanium is not as effective at low levels, so some of the benefits are lost.
- Silver is well known as an additive to Sn/Cu solders. It causes a dull appearance and graininess in the solder, and gives shrinkage cracks. Silver adds a significant amount to the cost of the solder. Silver is also known to promote corrosion to the solder pot, and dramatically increases the rate of dross formation.
- Cobalt gives some improvement to the fluidity of the solder which improves hole fill and wetting. Cobalt is unstable forming compounds which separate from the bulk solder, which leads to a drop in cobalt concentration. Cobalt also does not stabilize the intermetallic of the solder joint. Intermetallic growth over time can lead to mechanical failure of the solder joint.
- Phosphorous is sometimes used as a dross inhibitor. Phosphorous dramatically reduces the fluidity of the Sn/Cu solder which leads to issues with hole fill and wetting. Phosphorous also can promote corrosion of solder pots which shortens the life of the equipment.

For more questions regarding the SN100C soldering process, please contact your local FCT Assembly representative.

